


The sieve of  Eratosthenes is an algorithm for finding all prime numbers in the range [1; n] in 
𝑂𝑂 𝑛𝑛 log log 𝑛𝑛 time and requiring only n bits of  memory.

The algorithm works as follows:

1. Create a Boolean array of  size n and mark each number in the array from 2 to n as prime 
(by setting the value at each index of  the array to true).

2. Set 𝑝𝑝 equal to 2 (the smallest prime number).

3. Mark each multiple of  𝑝𝑝 starting from 𝑝𝑝2 as composite (by setting the value at that index of  
the array to false).

4. Iterate through the rest of  the array. For each prime number set 𝑝𝑝 equal to this number.
If  𝑝𝑝 is greater than 𝑛𝑛 then the algorithm is done. Otherwise repeat step 3. The next prime 
number at each point of  the algorithm will be the next number in the array that is marked as 
prime.

Sieve of  Eratosthenes



Example
Find all prime numbers from 1 to 40

Create a Boolean array of  size n and mark each number in the array 
from 2 to n as prime



Example
Find all prime numbers from 1 to 40

Set all proper multiples of  2 (multiples of  2 that are greater than 2) as 
composite



Example
Find all prime numbers from 1 to 40

The next prime number is 3 so mark all proper multiples of  3 as 
composite



Example
Find all prime numbers from 1 to 40

The next prime number is 5 so mark all proper multiples of  5 as 
composite



Example
Find all prime numbers from 1 to 40

The next prime number is 7. However 7 is greater than 40 so the 
algorithm is done. The remaining numbers that are unmarked are 

prime numbers.















Binary exponentiation is a method of  calculating 𝑎𝑎𝑛𝑛 using 𝑂𝑂 log𝑛𝑛 multiplications.

By expressing 𝑛𝑛 in its base 2 representation, we can calculate 𝑎𝑎𝑛𝑛 by doing at most log2 𝑛𝑛
multiplications. For example, 511 = 510112 = 58 � 52 � 51

We can therefore calculate 𝑎𝑎𝑛𝑛 efficiently if  we know 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎4, …, 𝑎𝑎 log2 𝑛𝑛 . These numbers 
can be found by starting with 𝑎𝑎 and repeatedly squaring it. We can then use bitwise 
operations to determine if  the current power of  𝑎𝑎 should be included in the representation of  
𝑎𝑎𝑛𝑛.

The algorithm can be extended to calculate 𝑎𝑎𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚.

Binary exponentiation











https://cp-algorithms.com/algebra/sieve-of-eratosthenes.html
https://cp-algorithms.com/algebra/binary-exp.html
https://www.spoj.com/problems/LASTDIG/

	Sieve of Eratosthenes and Efficient exponentiation 
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Why the algorithm works
	Example implementation
	Linear sieve
	How the algorithm works
	Example implementation
	Why the algorithm works
	Slide Number 14
	Example C++ implementation
	Example C++ implementation using mod
	Practice problem
	Answer
	Resources

