Sieve of Eratosthenes and Efficient exponentiation

By Muhammad Khan

Sieve of Eratosthenes

The sieve of Eratosthenes is an algorithm for finding all prime numbers in the range $[1 ; n]$ in $O(n \log \log n)$ time and requiring only n bits of memory.

The algorithm works as follows:

1. Create a Boolean array of size n and mark each number in the array from 2 to n as prime (by setting the value at each index of the array to true).
2. Set p equal to 2 (the smallest prime number).
3. Mark each multiple of p starting from p^{2} as composite (by setting the value at that index of the array to false).
4. Iterate through the rest of the array. For each prime number set p equal to this number. If p is greater than \sqrt{n} then the algorithm is done. Otherwise repeat step 3 . The next prime number at each point of the algorithm will be the next number in the array that is marked as prime.

Example

Find all prime numbers from 1 to 40
Create a Boolean array of size n and mark each number in the array from 2 to n as prime

	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40

Example

Find all prime numbers from 1 to 40
Set all proper multiples of 2 (multiples of 2 that are greater than 2) as composite

	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40

Example

Find all prime numbers from 1 to 40
The next prime number is 3 so mark all proper multiples of 3 as composite

	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40

Example

Find all prime numbers from 1 to 40
The next prime number is 5 so mark all proper multiples of 5 as composite

	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40

Example

Find all prime numbers from 1 to 40
The next prime number is 7 . However 7 is greater than $\sqrt{40}$ so the algorithm is done. The remaining numbers that are unmarked are
prime numbers.

	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40

Why the algorithm works

\diamond A number is prime if it is not divisible by any prime number smaller than it. Because we iterate through the numbers in order, if we reach a number that has not yet been marked as composite, then this number is a prime number.
\diamond For each prime number p, we mark each multiple of p as composite, starting from p^{2}. This is because each multiple of p less than p^{2} has a prime factor less than p .
\diamond If the current value of p is greater than \sqrt{n}, then the algorithm is done. This is because each composite number in the range [1; n] has a prime factor less than or equal to \sqrt{n}.
bool prime[n];
for $\mathrm{i}=2$ to n :
prime[i] $=$ true;
for $\mathrm{i}=2$ to n :
if prime $[i]==$ true:

$$
\mathrm{j}=\mathrm{i}^{*} \mathrm{i} \text {; }
$$

$$
\text { while } \mathrm{j}<=\mathrm{n} \text { : }
$$

prime[j]=false;

$$
j=j+i ;
$$

Example implementation

```
int n;
bool prime[n+1];
for(int i=2; i<=n; i++)
    prime[i]=true;
for(int i=2; i*i<=n; i++){
    if(prime[i])
        for(int j=i*i; j<=n; j+=i)
            prime[j]=false;
}
```


Linear sieve

The linear sieve algorithm is an alternative algorithm to the sieve of Eratosthenes. It has a time complexity of $\mathrm{O}(n)$. However, the downside is that it requires n bytes of memory whereas the sieve of Eratosthenes only requires n bits.

An advantage of using the linear sieve is that we can easily calculate the prime factorisation of any number in the range $[2 ; n]$ after all the preprocessing is done.

How the algorithm works

We create an array $l p$ which will contain the minimum prime factor of each number i in the range [$2 ; \mathrm{n}]$. Initially, this array will contain zeroes at every index, indicating that these numbers are all prime.

Each time we encounter a prime number, we store this number in an array pr .

We then traverse through the array. At each index i we have two possibilities:
If $l p[i]=0$ then i is a prime number.
If $l p[i] \neq 0$ then i is a composite number and its minimum prime factor is $l p[i]$.

We then update numbers in the array that are divisible by i in a way that each number is only updated once.

Example implementation

```
std::vector<int> lp(n+1), pr;
for(int i=2; i <= n; i++){
    if(lp[i]==0){
        lp[i]=i;
        pr.push_back(i);
    }
    for(int j=0; i * pr[j]<=n; j++){
        lp[i* pr[j]] = pr[j];
        if(pr[j]==lp[i])
            break;
    }
}
```


Why the algorithm works

Each number i has a unique representation in the form $i=l p[i] \cdot x$ where $l p[i]$ is the minimum prime factor of i and the number x doesn't have any prime factors less than $l p[i]$.
Our algorithm therefore goes through each prime number multiple p of i, and sets the lowest prime factor of this number to be p while $p \leq l p[x]$.

Binary exponentiation

Binary exponentiation is a method of calculating a^{n} using $O(\log n)$ multiplications.
By expressing n in its base 2 representation, we can calculate a^{n} by doing at $\operatorname{most}^{\log _{2} n}$ multiplications. For example, $5^{11}=5^{1011_{2}}=5^{8} \cdot 5^{2} \cdot 5^{1}$

We can therefore calculate a^{n} efficiently if we know $a^{1}, a^{2}, a^{4}, \ldots, a^{\left[\log _{2} n\right\rfloor}$. These numbers can be found by starting with a and repeatedly squaring it. We can then use bitwise operations to determine if the current power of a should be included in the representation of a^{n}.

The algorithm can be extended to calculate $a^{n} \bmod m$.

Example C++ implementation

```
long long binary(long long a, long long n){
    long long answer=1;
    while(n>0){
        if(n&1)
            answer*=a;
        a*=a;
        n>>=1;
    }
    return answer;
}
```


Example C++ implementation using mod

```
long long binary(long long a, long long n, long long m){
    a%=m;
    long long answer=1;
    while(n>0){
        if(n&1)
            answer=answer*a%m;
        a*=a;
        n>>=1;
    }
    return answer;
}
```


Practice problem

Given two integers a and b, find the last digit of a^{b}.

Input
Two integers, $a(0 \leq a \leq 20)$ and $b\left(0 \leq b \leq 10^{10}\right)$

Output
One integer, d , the last digit of a^{b}.

Answer

Calculate $a^{b} \bmod 10$ using binary exponentiation

Resources

https:/ / cp-algorithms.com/algebra/sieve-of-eratosthenes.html
https:// cp-algorithms.com/algebra/binary-exp.html
https://www.spoj.com/problems/LASTDIG/

